Fibonacci sequence ( Python exercise )

Let’s continue with the simple Python exercises I’ve been messing around lately. This is a classical question at Dev job interviews, the Fibonacci sequence code. The idea behind this is to come up with code, that sums up the previous 2 member values for a member in the sequence, simply expressed like 1,2,3,5,8,13…

Below are my personal takes on this problem.

1: The nice and performing solution

#get fibonacci
import sys

def main(arg):
    seq_len = arg
    seq_len_iterator = 2
    var1 = 1
    var2 = 2
    fibonacci = ([var1, var2])

    while seq_len_iterator < seq_len:

        var3 = var1 + var2
        fibonacci.append(var3)

        i = len(fibonacci)
        var1 = fibonacci[i-2]
        var2 = fibonacci[i-1]

        seq_len_iterator = seq_len_iterator + 1

    print(f'Fibonacci sequence for {seq_len} sequence members goes like: {fibonacci}')

if __name__ == '__main__':
    try:
        arg = int(sys.argv[1])
        main(arg)
    except:
        print(f'Invalid input, must be integer!')

Execute with the needed sequence member count argument like for instance :

python.exe C:/codility/fibonacci/__main__.py 10

 

2: The alternative “nested-iterations” solution ( Not performing over ~30 sequence members count, durations exponentially grow, however its another example of a valid solution and can be useful if you need to warm oneself during long winter cold nights somewhere outside 🙂 )

#get fibonacci
import sys


def main(arg):
    seq_len = arg
    seq_len_iterator = 2
    iterator = 1
    var1 = 1
    var2 = 2
    fibonacci = ([var1, var2])

    while seq_len_iterator < seq_len:
        if iterator == var1 + var2:
            fibonacci.append(iterator)
            var1 = var2
            var2 = iterator
            iterator = iterator + 1
            seq_len_iterator = seq_len_iterator + 1
            #print(f'Fibonacci member found in try #: {iterator}')
        else:
            iterator = iterator + 1

    print(f'Fibonacci sequence for {seq_len} sequence members goes like: {fibonacci}')


if __name__ == '__main__':
    try:
        arg = int(sys.argv[1])
        main(arg)
    except:
        print(f'Invalid input, must be integer!')

Execute with the needed sequence member count argument like for instance :

python.exe C:/codility/fibonacci/__main__.py 10
Advertisements

Binary gap length ( Python exercise )

Sometimes I like to mess around http://www.codility.com , doing the excercises trying to keeping my development skills fresh. This is my take on the binary gap length problem using basic Python 3. The binary gap length is an excercise where you need to come up with a code, returning the longest sequence of zeros in a 16 digit “binary” string. This question also often shows up at developer job interviews.

#get max binary zeros gap
import re
import sys


def get_binary_gap(input_seq):
    iterator = 0
    iterator_zeros = '0'

    while iterator < 16:
        if iterator_zeros in input_seq:
            stack = len(iterator_zeros)
            if stack > iterator:
                output = stack

        elif iterator_zeros not in input_seq and len(iterator_zeros) == 1:
            output = 0

        else:
            pass

        iterator_zeros = iterator_zeros + '0'
        iterator = iterator + 1
    return output


def main(arg):
    input_seq = arg

    if len(input_seq) == 16 and bool(re.match("^[0-1]{1,16}$", input_seq)):
        output = get_binary_gap(input_seq)
        print(f'The max binary gap of zeros in sequence {input_seq} is {output}')

    else:
        print(f'invalid input sequence {input_seq}')


if __name__ == '__main__':
    arg = str(sys.argv[1])
    main(arg)

Execute with the binary sequence argument like for instance :

python.exe C:/codility/binary_gap/__main__.py 0100000101010100